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[Background]

For vibration-based SHM, uncertainty heavily exists in the process and may cause a masking effect to damage
signal, which introduced huge difficulty for anomaly detection.

Among various kinds of uncertainty, environmental and operational variables (EOVs) induced variation is
considered to be a severe disturbance for anomaly detection in long-term SHM.

[Objective]

This study aims to make some strategies for anomaly detection considering the influence of identification
uncertainty and EOVs-related variability in long-term SHM.

By data-driven methods utilizing the correlation, autocorrelation, co-integration or subspace properties,
some invariant features are expected to be revealed from the long-term variation of general damage
indicators like modal frequency, which can be further used for anomaly detection with higher reliability.

[Approach]

Considering the correlation and autocorrelation patterns as inherent properties which may be robust to the
disturbance of EOVs on some damage-sensitive features like modal frequency in long-term SHM, some
EOVs-driven models like BLR, GPR, and some non-EOVs models like SARIMA, LSTM, were investigated with a
case study. The results indicated a better performance in non-EOVs models without any constraints from
deficient measurements of EOVs (latent variable issue in EOVs-driven models).

[Publication plan]

* ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems: Part A. Civil Engineering. (a paper
titled “Modeling variability in vibration-based long-term SHM of bridges” has been submitted)

*9th International Conference on Experimental Vibration Analysis for Civil Engineering Structures.

[Results]
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(c) Prediction by SARIMA and LSTM (d) Residual histogram (LSTM)
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